Generalized cross validation for wavelet thresholding
نویسندگان
چکیده
Noisy data are often fitted using a smoothing parameter, controling the importance of two objectives that are opposite to a certain extent. One of these two is smoothness and the other is closeness to the input data. The optimal value of this paramater minimizes the error of the result (as compared to the unknown, exact data), usually expressed in the L2 norm. This optimum cannot be found exactly, simply because the exact data are unknown. In spline theory, the Generalized Cross Validation (GCV) technique has proven to be an effective (though rather slow) statistical way for estimating this optimum. On the other hand, wavelet theory is well suited for signal and image processing. This paper investigates the possibility of using GCV in a noise reduction algorithm, based on wavelet-thresholding, where the threshold can be seen as a kind of smoothing parameter. The GCV method thus allows choosing the (nearly) optimal threshold, without knowing the noise variance. Both an original theoretical argument and practical experiments are used to show this successful combination.
منابع مشابه
Image de - noising by integer wavelet transforms and generalizedcross
De-noising algorithms based on wavelet thresholding replace small wavelet coeecients by zero and keep or shrink the coeecients with absolute value above the threshold. The optimal threshold minimizes the error of the result as compared to the unknown, exact data. To estimate this optimal threshold, we use Generalized Cross Validation. This procedure does not require an estimate for the noise en...
متن کاملExperiments with Wavelet based Image De-noising using Generalized Cross Validation
De-noising algorithms based on wavelet thresholding replace small wavelet coefficients by zero and keep or shrink the coefficients with absolute value above the threshold. The optimal threshold minimizes the error of the result as compared to the unknown, exact data. To estimate this optimal threshold, we use Generalized Cross Validation. This procedure does not require an estimation for the no...
متن کاملMultiple Wavelet Threshold Estimation by Generalized Cross Validation for Data with Correlated Noise
De-noising algorithms based on wavelet thresholding replace small wavelet coeecients by zero and keep or shrink the coeecients with absolute value above the threshold. The optimal threshold minimizes the error of the result as compared to the unknown, exact data. To estimate this optimal threshold, we use Generalized Cross Validation. This procedure does not require an estimation for the noise ...
متن کاملMultiple wavelet threshold estimation by generalized cross validation for images with correlated noise
Denoising algorithms based on wavelet thresholding replace small wavelet coefficients by zero and keep or shrink the coefficients with absolute value above the threshold. The optimal threshold minimizes the error of the result as compared to the unknown, exact data. To estimate this optimal threshold, we use generalized cross validation. This procedure does not require an estimation for the noi...
متن کاملWavelet thresholding using generalized cross validation
De-noising algorithms based on wavelet thresholding replace small wavelet coeecients by zero and keep or shrink the coeecients with absolute value above the threshold. The optimal threshold minimizes the error of the result as compared to the unknown, exact data. To estimate this optimal threshold, we use Generalized Cross Validation. This procedure is fast and does not require an estimation fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 56 شماره
صفحات -
تاریخ انتشار 1997